110 research outputs found

    Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles

    No full text
    International audienceOver the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to inducein vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses

    Preparation of anti-vicinal amino alcohols: asymmetric synthesis of D-erythro-Sphinganine, (+)-spisulosine and D-ribo-phytosphingosine

    Get PDF
    Two variations of the Overman rearrangement have been developed for the highly selective synthesis of anti-vicinal amino alcohol natural products. A MOM-ether directed palladium(II)-catalyzed rearrangement of an allylic trichloroacetimidate was used as the key step for the preparation of the protein kinase C inhibitor D-erythro-sphinganine and the antitumor agent (+)-spisulosine, while the Overman rearrangement of chiral allylic trichloroacetimidates generated by asymmetric reduction of an alpha,beta-unsaturated methyl ketone allowed rapid access to both D-ribo-phytosphingosine and L-arabino-phytosphingosine

    High expression of gabarapl1 is associated with a better outcome for patients with lymph node-positive breast cancer

    Get PDF
    International audienceBACKGROUND: This study evaluates the relation of the early oestrogen-regulated gene gabarapl1 to cellular growth and its prognostic significance in breast adenocarcinoma. METHODS: First, the relation between GABARAPL1 expression and MCF-7 growth rate was analysed. Thereafter, by performing macroarray and reverse transcriptase quantitative-polymerase chain reaction (RT-qPCR) experiments, gabarapl1 expression was quantified in several histological breast tumour types and in a retrospective cohort of 265 breast cancers. RESULTS: GABARAPL1 overexpression inhibited MCF-7 growth rate and gabarapl1 expression was downregulated in breast tumours. Gabarapl1 mRNA levels were found to be significantly lower in tumours presenting a high histological grade, with a lymph node-positive (pN+) and oestrogen and/or progesterone receptor-negative status. In univariate analysis, high gabarapl1 levels were associated with a lower risk of metastasis in all patients (hazard ratio (HR) 4.96), as well as in pN+ patients (HR 14.96). In multivariate analysis, gabarapl1 expression remained significant in all patients (HR 3.63), as well as in pN+ patients (HR 5.65). In univariate or multivariate analysis, gabarapl1 expression did not disclose any difference in metastasis risk in lymph node-negative patients. CONCLUSIONS: Our data show for the first time that the level of gabarapl1 mRNA expression in breast tumours is a good indicator of the risk of recurrence, specifically in pN+ patients

    S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism

    Get PDF
    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection

    2012 Activity Report of the Regional Research Programme on Hadrontherapy for the ETOILE Center

    Get PDF
    2012 is the penultimate year of financial support by the CPER 2007-2013 for ETOILE's research program, sustained by the PRRH at the University Claude Bernard. As with each edition we make the annual review of the research in this group, so active for over 12 years now. Over the difficulties in the decision-making process for the implementation of the ETOILE Center, towards which all our efforts are focussed, some "themes" (work packages) were strengthened, others have progressed, or have been dropped. This is the case of the eighth theme (technological developments), centered around the technology for rotative beam distribution heads (gantries) and, after being synchronized with the developments of ULICE's WP6, remained so by ceasing its activities, coinciding also with the retirement of its historic leader at IPNL, Marcel Bajard. Topic number 5 ("In silico simulations") has suffered the departure of its leader, Benjamin Ribba, although the work has still been provided by Branka Bernard, a former postdoctoral fellow in Lyon Sud, and now back home in Croatia, still in contract with UCBL for the ULICE project. Aside from these two issues (and the fact that the theme "Medico-economical simulations" is now directly linked to the first one ("Medical Project"), the rest of the teams are growing, as evidenced by the publication statistics at the beginning of this report. This is obviously due to the financial support of our always faithful regional institutions, but also to the synergy that the previous years, the European projects, the arrival of the PRIMES LabEx, and the national France Hadron infrastructure have managed to impulse. The Rhone-Alpes hadron team, which naturally includes the researchers of LPC at Clermont, should also see its influence result in a strong presence in France Hadron's regional node, which is being organized. The future of this regional research is not yet fully guaranteed, especially in the still uncertain context of ETOILE, but the tracks are beginning to emerge to allow past and present efforts translate into a long future that we all want to see established. Each of the researchers in PRRH is aware that 2013 will be (and already is) the year of great challenge : for ETOILE, for the PRRH, for hadron therapy in France, for French hadrontherapy in Europe (after the opening and beginning of treatments in the German [HIT Heidelberg, Marburg], Italian [CNAO, Pavia] and Austrian [MedAustron, Wien Neuerstadt]) centers. Let us meet again in early 2014 for a comprehensive review of the past and a perspective for the future ..

    Chronic Cyclodextrin Treatment of Murine Niemann-Pick C Disease Ameliorates Neuronal Cholesterol and Glycosphingolipid Storage and Disease Progression

    Get PDF
    BACKGROUND:Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs). While current treatment therapies are limited, a few drugs tested in Npc1(-/-) mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted increased lifespan for Npc1(-/-) mice receiving only 2-hydroxypropyl-beta-cyclodextrin (CD), the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit. METHODOLOGY/PRINCIPAL FINDINGS:Administration of CD to Npc1(-/-) mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc2(-/-) mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage. CONCLUSIONS/SIGNIFICANCE:Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1(-/-) and Npc2(-/-) mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis

    Transient Alteration of Cellular Redox Buffering before Irradiation Triggers Apoptosis in Head and Neck Carcinoma Stem and Non-Stem Cells

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. Methodology/Principal Findings: Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10 % of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. Conclusions: This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials o

    Niemann-Pick disease type C

    Get PDF
    Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations

    TOI-269 b: An eccentric sub-Neptune transiting a M2 dwarf revisited with ExTrA

    Get PDF
    We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI-269 (TIC 220 479 565, V = 14.4 mag, J = 10.9 mag, Ro = 0.40 Ro, Mo = 0.39 Mo, d = 57 pc). The exoplanet candidate has been identified in multiple TESS sectors, and validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determined mass, radius, and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P = 3.6977104 ± 0.0000037 days, a radius of 2.77 ± 0.12 R·, and a mass of 8.8 ± 1.4 M·. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e = 0.425-0.086+0.082, TOI-269 b has one of the highest eccentricities of the exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions
    corecore